Mathematics Department STAT236 - Second-Hour Exam - Fall 2011 ### Student Name: #### Section: | (1) | Mohammad Madīah | MPW 14:00 - 15:20 | |-----|------------------|---------------------| | 2 | Tareq Sadeq | SMTW 10:00 - 10:50- | | 3 | Tareq Sadeq | SMFW 13:00 - 13:50 | | 4 | Hani Kabajah- | SMW 12:00 - 12:50 | | 5 | Hani Kabajah | SMW 09:00 - 09:50 | | 6 | Maher Abdellatif | TR-09:30 - 10:50 | | 7 | Hani Kabajah | SMW 08:00 - 08:50 | | | | | # Formulas: - Binomial: $$f(x) = \binom{n}{x} p^x (1-p)^{n-x}$$, $E(x) = np$, $\sigma = \sqrt{np(1-p)}$ - Poisson: $$f(x) = \frac{\mu^x e^{-\mu}}{x!}$$ - Exponential: $$F(x_0) = P(x \le x_0) = 1 - e^{-\frac{x_0}{\mu}}$$ - Standard error of the sample mean: $$\sigma_{\bar{z}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$ (l'inite population) $$\dot{\sigma}_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$ (Infinite population) - Standard error of the sample proportion: $$\sigma_{\overline{p}} = \sqrt{\frac{p(1-p)}{n}} \sqrt{\frac{N-n}{N-1}}$$ (Finite population) $$\sigma_{\overline{p}} = \sqrt{\frac{p(1-p)}{n}}$$ (Infinite population) | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | |---| | If X is a discrete random variable with a probability function. Questions 1-2. | | $f(x) = \frac{x}{10}, x = 1, 4, 5$ $(a) 42$ $b. 6$ $c. 3.8$ $d. 1.36$ $(x - y)$ $(x - y)$ $(x - y)$ $(x - y)$ | | 2. Find Var(X). a. 4.2 b. 1.56 c. 0.89 d. 1.36 | | A sample of 10 Palestinians is randomly and independently selected. If 30% of the Palestinian population are unemployed, Questions 3 - 5 pc | | . /3. What is the mean number of unemployed persons? | | a. 2 b. 8 c. 1.6 (d.)3 A-What is the probability that 5 persons are unemployed? (a) 0.103 b. 0.0264 c. 0.107 d. 0.5 (b) $=$ (c) $=$ (c) $=$ (c) $=$ (c) $=$ (d.)3 (i) $=$ (i) $=$ (i) $=$ (i) $=$ (i) $=$ (i) $=$ (ii) $=$ (ii) $=$ (iii) (ii | | 5What is the probability that at least 2 persons are unemployed? a. 0.121 b. 0.879 c. 0.3754 d. 0.6246 c. 0.6246 | | 6. An airport administration desires to study the waiting time in a-line at check-in desk. The time follows an exponential distribution with a mean of 10 minutes. The probability that the waiting time is less than 15 minutes is: a. 0.2231 b. 0.7135 c. 0.2865 d. 0.7769 | | A manufacturer produces keys at the rate of 10 keys per hour. Questions 7-9 (L)) O -> Per hour 7. What is the probability that the manufacturer produces exactly 8 keys in an hour? a. 0.063 b. 0.0076 c. 0.0413 - (d.) 0.11 | | 8. What is the probability that the manufacturer produces exactly 2 keys in 15 minutes? (a) 0.2565 b. 0.3 c. 0.0076 d. 0.2137 $M = 2.5$ in 15 minutes? | | 9. What is the probability that the time needed to produce a key is more than 10 minutes? (a.) 0.1889 b. 0.2 2. 0.1 (d.) 0.3679 60 -6-10 60 -6-10 | | 10. A computer randomly selects numbers between 4 and 10 with uniform probability distribution. What is the probability that a number will have a value of at least 5? a. 0.25 b. 0.33 C. 0.833 d. 0.625 D-Z S 10 BOMIN ISMIN | | P(X72) = 1 - 6(1) + 6(0). | | | | $\frac{5e^{-2i}}{5e^{-2i}}$ $1 - (10)(03)(1-03)^{2}$ | The wages of employees follow a normal distribution with a mean of \$900 and a standard deviation of \$40. Questions 11-14 | V | 11What is the a 0.25 | probability that a se
b. 0.8944 | lected emplo
c. 0.1056 | yee will have a
d.)0.7734 | wage greater th | an \$870? | P('₩) | |---|--|--|---|------------------------------|------------------|------------|---------| | 1 | | probability that a set
6 b. 0.9938 | lected emplo
c. 0.0062 | yee will have a | | \$1000 and | | | \ | (a)0.9 | probability that a se
b. 0.05
bee has a wage among | c. 0.1
; the top 5%: | d. 0.2
of wages if her | fees O. | oq = X- | | | 7 | 75. Palestine Co | entral Bureau of Stat
1. This is the same as | | | | | | | 2 | b. Syste
c. Strati
d. Conv | le random sampling matic sampling fied sampling renience sampling ment sampling | | | DINOM OF | chi | +4 | | | students to sele
sampling metho
a. Simp
b. Syste
c. Strati | at BZU studies the act random samples of dis called: le random sampling matic sampling fied sampling renience sampling ment sampling | of BZU stude | | | | | | | Question 2: | each of the following | Similar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinilar
Sinila
Sinilar
Sinila
Sinila
Sinila
Sinila
Sinila
Sinila
Sinila
Sinila
Sinila | or continuous | s random variabl | e? | | | | b. The | number of customers wages of employ number of customers time passed during a | s arriving at a | a bank: | Hammes di
 | iscrel | - inite | | | | | | | | | | ### Question 3: Assume you know that 10% of STAT236 students fail the course. A class of 100 students is selected. $$P = C \cdot | S = C \cdot |$$ $$N = | C \cdot | S = C \cdot |$$ a) What is the mean number of failures in the sample? $$B(100901) \qquad = 10 \qquad (100+01)$$ $$= 10 \qquad = 10 \qquad = 100 =$$ c) Check if the conditions of normal approximation of binomial probabilities are satisfied. = VIO(1-01) \ V3 =3 c) Check if the conditions of normal approximation of binomial probabilities are satisfied. Pt is Aformal approximation because $$000P75$$ $100(1-01)$ 90 7-5 What is the approximate probability that at most 6 students will fail in the sample of 100 students? $$N(10,3)$$ $N(10,3)$ #### Ouestion 4: In 2006, the participation rate in Palestinian elections was 70%. A survey of 100 voters was conducted to estimate the proportion of those who participated at elections. a) What is the probability that one randomly selected individual will have participated in $$E(\bar{p}) = \mu \bar{p} = \bar{p}$$ $$= 0.7$$ c) Find the standard error of the sample proportion. $$30P = \sqrt{\frac{P(1-P)}{n}} = \sqrt{\frac{0.01}{0.01}}$$ d) What is the probability that the sample proportion will be within ± 0.08 of the population proportion? $$P\left(\frac{0.62-0.7}{0.046} < \overline{p} < 0.78-0.7\right)$$ 0.9591+0.9591-1 # Part: Show-all your work - 16. A life insurance company has determined that each week an average of seven claims is filed in one of its branch. - 5 points - a. What is the probability that during the next week exactly seven claims will be filed? - 5 Paints - b. What is the expected number of claims in two weeks? a) $$P(X=\overline{y}) = \frac{-7}{9!} = 0.149 \approx 0.15$$ - 17. The average price of personal computers manufactured by MNM Company is \$1,200 with a standard deviation of \$220. Furthermore, it is known that the computer prices manufactured by MNM are normally distributed. DO NOT ROUND YOUR NUMBERS. - 5 80m - a. What is the probability that a randomly selected computer will have a price of at least \$1,530? - 5 11 - What are the minimum and the maximum values of the middle 95% of computer prices? - 5 % - c. If 513 of the MNM computers were priced at or below \$647.80, how many computers were produced by MNM? $$P(X \ge 1570) = p(Z \ge \frac{1570 - 1200}{220}) = p(Z \ge 1.5)$$ $$= 0.5 - 0.4302 = 0.0668$$ $$\frac{Z}{Z_{cors}} = 1.96 = \frac{X - 1200}{220} = X = 1200 + 1.96(210) = X = 1200 + 1.96(210) = 16.31.3$$ $$\frac{7}{1995} = -1.96 = \frac{x - 1200}{220} \Rightarrow x = 1200 - 431.2 = \boxed{1631.2}$$ $$\frac{513}{N} = p(X \le 647.8) = p(Z \le \frac{647.8 - 1200}{220})$$ $$= p(Z \le -2.51) = 0.5 - (0.494) = 0.006$$ - 19. Students of a large university spend an average of \$5 a day on lunch. The standard deviation of the expenditure is \$3. A simple random sample of 36 students is taken. - a. What are the expected value, standard deviation, and shape of the sampling distribution of the sample mean? - b. What is the probability that the sample mean will be at least \$4? (b) $$P(X \ge 4) = P(Z \ge \frac{4-5}{2}) = P(Z \ge 2)$$ $P(X \ge 4) = P(Z \ge \frac{4-5}{2}) = P(Z \ge 2)$ $P(X \ge 4) = P(Z \ge 4-5) = P(Z \ge 2)$ $P(X \ge 4) = P(Z \ge 4-5) = P(Z \ge 2)$ $P(X \ge 4) = P(Z \ge 4-5) = P(Z \ge 2)$ $P(X \ge 4) = P(Z \ge 4-5) = P(Z \ge 2)$ $P(X \ge 4) = P(Z \ge 4-5) = P(Z \ge 2)$ $P(X \ge 4) = P(Z \ge 4-5) = P(Z \ge 2)$ $P(X \ge 4) = P(Z \ge 4-5) = P(Z \ge 2)$ - 20. Ten percent of the items produced by a machine are defective. A random samive of 100 items is selected and checked for defects. - 5 / cinf/ a. Determine the standard error of the sample proportion. 5 / cinf/ b. What is the probability that the sample will contain more than 2.5% defective units? (b) $$r = \sqrt{\frac{\pi(1-\pi)}{n}} = \sqrt{\frac{(a\cdot 1)(a\cdot 9)}{100}} = 0.03$$ b) $$f(P > 0.025) = f(Z > \frac{0.025 - 0.000}{0.03})$$ $= f(Z > -2.5) = 0.5 + 0.4928 = 0.9938)$